AD=A09% 619

UNCLASSIFIED

|uFl

NAVAL POSTGRADUATE SCHOOL MONTEREY CA
SOF TWARE SVSTEH SAFETY.(U)

OCT 80 D M L
!PSG?-OO-O!S




e
(€,‘—/)
NPS67-80-013
o Monterey, California
|
Ne/
<N
op
&
S
(]
<C
E.
( SOFTWARE §YSTEM SAFETY.
l')ﬂc;nald'v{{./ Layton ! DT] C
Bccob‘er-wsyo PR ELéCTE
N FEBS 1391
)
’  Final }iepﬂ't, for Period Ending E
v, \ Sepmm’ﬂs@/ -
X
e Approved for public release; Distribution unlimited
B Prepared for: i A ’
Ll Chief of Naval Research
v -4 Arlington, VA 22217
: [ y, ¢ !
g
r 81 2




NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J. J. Ekelund David A. Shrady
Superintendent Acting Provost

The work reported herein was supported in part by the
Foundation Research Program of the Naval Postgraduate School
with funds provided by the Chief of Naval Research.

This report was prepared by:

%

Professor of Aeronautics

Reviewed by:

e F T /,/gz“’)%%f

M. F. PLATZER WILLIAM M, TOLLES
Chairman of RAeronautics Dean of Research




- . - ——r
UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE Whan Dare Fntered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
\. REPCRT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
NPS67-80~013 Y X a4
4. TITLE ’end Subtitle) 5. TYPE OF REPORT & PERIOD SOVERED

FINAL REPORT FY 1980

6. PERFORMING ORG. REPORT NUMBER

SOFTWARE SYSTEM SAFETY

7. AUTHOR() 8. CONTRACT OR GRANT NUMBER(s)

Donald M. Layton

9. PERFORAMING ORGANIZATIQN NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
. AREA & WORK UNIT NUMBERS
Naval Postgraduate School 61152N; RR 000-01-10
Monterey, CA 93940 N0O001480WR00054
1. CONTROLLING QFFICE NAME AND ADORESS 12, EPORT DAT

1°Uctober 1980

13. NUMBER OF PAGES

25

T4. MONITORING AGENCY NAME & ADDRESS(If different from Controiling Otlice) 15. SECURITY CLASS. (of this report)

Unclassified

15a. DECL ASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIAUTION STATEMENT rof this Report)

Approved for public release; distribution unlimited.

. ———- e = Ry

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if diflerent from Report) F:“”?’""””.‘:.*‘ A
NTIS GRASI Cj :
DTIC TAR '
Uniannounced
Justification. . . ._ |
. 18. SUPPLEMENTARY NOTES —— T3
! By - -

F w_Di:tributicm/
Avairlacility o

o b s
T TrTaneTor-

\ 19. KEY WORDS (Continue on reverse eide !{ necessary and ld_on(lly by dlock number) { - i .
' system safety Pist . fvecest |
} safety //Q ! \
software analysis | .
|| §
Y" 20. ABSTRACT (Continue on reverae aide Il necessary and identily by block number)

An examination of software system safety analysis has been made
and generalized techniques examined. These techniques parallel the
techniques used for hardware analysis and are, in fact, predicated
on the fact that the only safety perturbation in software is one
that directs or misdirects a hardware component. Discussion is

. presented for a top to bottom and a bottom up hierarchial analysis,
| as well as an integrated technique.

‘ DD ,55%'7: 1473 eoimion oF 1 nOV 6315 OBsOLETE
' S/N 01020146601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Bntered)




LY

ABSTRACT

An examination of software system safety analysis has
been made and generalized technigues examined. These tech-
niques parallel the techniques used for hardware analysis
and are, in fact, predicted on the fact that the only safety
perturbation in software is one that directs or misdirects a
hardware component.

Discussion is presented for a top to

bottom and a bottom up hierarchical analysis, as well as an

integrated technique.




I. BACKGROUND

Although the safety of the product has always received
some consideration, albeit possibly tacit, the formal,
systematic safety programs as we know them today did not come
into being until the early 1960's. The one exception to this
was the very strict safety controls established by the Atomic
Energy Commission on the use and exposure to nuclear materials.

The first system safety documentation requirement was the
United States Air Force Ballistic Systems Division Exhibit
62-41, "System Safety Engineering for the Development of Air
Force Ballistic Missiles", published in April 1962. This
document established System Safety requirements for the Asso-
ciate Contractors on the Minuteman missile program.

In September 1963, the United States Air Force Specifica-
tion, MIL-S-~38130 (USAF), "General Requirements for Safety
Engineering of Systems and Associated Subsystems and Equipment”
was promulgated as the first military requirement for the
engineering safety of general systems. This specification was
closely followed in October 1963 by the Navy's similar (and
nearly duplicate) requirement, MIL-S~38130(WEPS). These two
documents were later merged into a joint specification,
MIL-S-38130(ASG), and in June 1966, this specification became
a Department of Defense (DoD) requirement, MIL-S-38130A.

In July 1969, the System Safety Specification was revised

into a Military Standard, MIL-STD-882 and in July 1977,
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MIL-STD-882A expanded and defined in more specific terms the

System Safety Program requirements.

In December 1978, DoD Instruction 5000.36, "System
Safety Engineering and Management" stated that: "The Heads
of DoD components shall establish system safety programs and
apply Military Standard 882A....for each major system acqui-
sition of other systems and facilities, as appropriate, based
on the severity of associated hazards and the potential for
loss or damage...".

The purpose of the System Safety Program, as stated in
MIL-STD 882A is "To provide uniform requirements for
developing and implementing a system safety program of
sufficient comprehensiveness to identify the hazards of a
system and to ensure that adequate measures are taken to
eliminate or control the hazard".

The general requirements of the System Safety program
are that safety, consistent with mission requirements, is
built into the system in a timely, cost effective manner;
that hazards associated with each system are identified,
evaluated, and eliminated or controlled to an acceptable
level throughout the entire life cycle of the system; and
that retrofit actions required to improve safety are mini-
mized through the timely inclusion of safety features during
the development and acquisition of a system.

Each of the above listed requirements deserves special

attention and comment. For example, it is to be noted that




the Military Standard calls for safety consistent with
mission requirement, not "safety at any cost". The util-
ity of the system in the expected use environment is still
the prime factor for consideration, and the design safety
is intended, not to inhibit the mission, but rather to en-
hance the accomplishment of the mission.

It is also stated that hazards are to be identified,
evaluated and eliminated or controlled to an acceptable
level. This is the essence of what might be called the
System Safety Process. The use of historical data, simu-
lation, synthesis and test and evaluation are required to
identify hazards of the system while the system is still
in the design process.

The goal of this action is to minimize the risk, based
on hazard severity, hazard probability, criticality, cost,
time, resources and mission, throughout the lift cycle
including disposition and disposal.

By inserting the safety process as early as possible
in the design (and even concept) process, costly retrofit
actions are reduced at a great savings of money, operational
usage and limited resources. This takes safety from its
prior "Band-Aid" approach of "try it and then fix it" into

a new regime of designing the safety into the original

product.




II. RISK ASSESSMENT

The general requirements of MIL=-STD 882A include the
risk assessment procedures of conducting hazard analyses
starting in the Conceptual Phase and proceeding through the
production phase. These analyses include:

l. Preliminary Hazard Analysis - a "broad brush”
look at the potential hazards of systems and subsystems.
The Preliminary Hazard Analysis (PHA) is begun long before
detailed designs begin to take shape, and, although quite
qualitative in nature, the PHA provides a base for other
types of analyses.

2. Subsystem Hazard Analysis - Once detailed designs
are underway, more in-depth analyses can be conducted on
the subsystems. The subsystem may be a single component or
part, or it may be a complex mini-system. Frequently the
Subsystem Hazard Analysis (SSHA) is conducted on a fairly
large block, and only if the analysis indicates a high
degree of criticality is the analysis extended to lower
level components. This is necessary due to the time and
cost involved in the analysis procedure.

3. System Hazard Analysis - Once an SSHA has been
completed, one has some degree of confidence that the
critical hazards have been identified and eliminated or
controlled to an acceptable level in each of the applicable
subsystems, At this point a Systems Hazard Analysis (SHA)

is conducted to investigate the safety of subsystem
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interfaces., It is not at all unlikely that the interrela-
tionships between two "safe" subsystems may result in some
unsafe action of the combined system.

4, Operating and Support Analysis -~ Although it is
easy to forget during the design/production proéess that
the ultimate purpose is not the development of a system,
but is rather the operational utilization of the system,
one must keep in mind throughout the design/production
phases that this system must be operated and supported to
meet its mission utility. This is the purpose of Operating
and Support Hazard Analysis (O&SHA) where, for the first
time, the human element is injected into the equation. The
O&SHA considers operation, support, maintenance, transporta-
tion and other operational uses of the system.

The purpose of all these analyses is to (a) identify
any potential hazards, (b) evaluate the hazards, (c) assess
the risk of the hazard, and (d) provide the necessary infor-
mation required for the elimination or control of the hazard

if the hazard is determined to be critical.




III. HAZARD ANALYSIS TECHNIQUES

Although the techniques to be used in conducting hazard
analyses are generally at the option of the contractor,
several analysis techniques that may be used are spelled out
in MIL-STD 882A. These are:

1., Fault Tree Analysis - The Fault Tree is based on
the Logic Tree procedure as developed by the Bell Laboratories.
It was originally medified by the Boeing Company to trace
fault developments in the Minuteman missile system. The
Tree uses logic "gates" to build downward from a Head or
Undesired Event. Inasmuch as a form of the Fault Tree
Analysis may be used in Software analysis, some detail of
this technique is in order. Consider a system whose wiring

diagraml is shown below:
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Figure 1. Wiring diagram for Fault Tree

I"Advanced Concepts in Fault Tree Analysis"™ by David Haasl.
Paper presented at System Safety Symposium, Seattle, WA (1965).
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When the Switch is closed, the Timer Coil is energized
closing the Timer Contacts which puts power on the Relay
Coil. With the Relay Coil energized, the relay contacts
close, permitting current flow to the motor. It has been
determined that overheating of the wire from point A& to
point B is critical to the system operation, and a Fault
Tree is constructed with the Head Event "Overheated Wire".

Examination of the system shows that two events may
produce an overheated wire, "Excessive current in the motor

system wiring" and "Power applied to the system for an ex-

tended time"., It is also seen that both cof these occurrences

must happen in concert. In other words, the "Overheated
Wire" is a result of "Excessive Current" AND "Power Applied
for an Extended Time". The logic event is, therefore, an
AND gate,

To determine why the power may be applied for an ex-
tended time, we examine the circuit and note that this may
occur if the power is not removed from the relay coil for
some reason, or if the relay contacts fail in the closed
position. We now have the next branch of our Tree with an
OR gate connecting "Power not removed from relay coil" and
"Relay contacts fail closed".

Similar development takes place proceeding downward
from the Head Event until one reaches primary or secondary
failures. Primary failures are those that occcur while the

part or component is operating within the parameters for
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which it was designed, and a Secondary}fhilure is fhen the

component is subjected to abnormal, out-of-design stresses,

A complete Fault Tree diagram for the system under
consideration is shown in Figure 2,

Analysis of a Fault Tree may be either qualitative or
quantitative. If the failure probabilities for each of the
"end faults" of Figure 2 are known, the failure probabili-~
ties of each of the intermediate branches as well as the
failure probability of the Head Event may be computed using
Boolean Algebra.

But even a qualitative examination of many Fault Trees
will provide useful information. With an AND gate leading
directly to the Head Event, it is seen that inasmuch as
both of the next lower level events must occur for the un-
desired Head Event to occur, eliminating either of the next
level events will eliminate the failure of the Head Event.

Since the gate leading to the "Power applied for an ex~
tended time” is an OR gate, failure of either of the next
lower level events will still produce this undesired sub-~
event. This means that both of the next lower events must
be eliminated to prevent this sub-failure,

On the other hand, the gate leading to "Excessive
current in the system wiring" is also an AND gate, and this
sub-failure will only occur if both of its sub-level events
occur. One of these events, "Motor failed shorted” will

occur only with a primary motor failure, leading us to the
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conclusion that a high quality, high reliability motor will
prevent (or at least reduce the probability of the occurrence
of) the Head Event,

We see also that if we can prevent the fuse from failing
to open, we can also prevent excessive wiring. This may be

accomplished by both preventing the insertion of an over-

sized fuse (design of the fuse holder) and prevention of a
primary fuse failure in which the fuse fails to open with
excessive current, With most fuse designs, this type of
fuse failure should be extremely remote.

2. Fault Hazard Analysis - A second technique cited
in MIL-STD 882A is the Fault Hazard Analysis (FHA), which
is based on the techniques long in use by Reliability called

Failure Mode and Effect analysis (FMEA) or Failure Mode,

Effect, and Criticality Analysis (FMECA). The Fault Hazard

Analysis, unlike the Fault Tree Analysis starts at the

bottom and works up, rather than at the top working down.

Whereas, in the Fault Tree Analysis we conducted our

analysis to determine what failures would cause an undesired

event, in the Fault Hazard Analysis, one starts with the

; part or component failure and determines the ultimate effect
of that failure.

) The Fault Hazard Analysis may be used in detailed

- examination, such as in an SHA where one is considering
failure modes and effects of detailed designs, or it may be

; used in a less structured format in an overall analysis of

design concepts, as in the Preliminary Hazard Analysis.




As with the Fault Tree Analysis, the Fault Hazard
Analysis may be either qualitative or gquantitative. A
qualitative analysis usuvally precedes any quantification.

3. Sneak Circuit Analysis - A third technique
referenced in MIL-STD 882A is that of the Sneak Circuit
Analysis. This is a technique, originally developed by the
Boeing Aerospace Company, to locate hazards that might

occur without a failure in the system. A classic example

of a Sneak Circuit was in a 1960's imported car in which

the radio and the brake lights both received their power
from a common terminal on the switch. The brake lights were
also capable of being powered through the emergency flasher
module, and this portion of the wiring was such that when
the brake pedal was depressed, even with the ignition switch
off, the brake lights were illuminated - and the radio came
on!

In addition to these three techniques cited in MIL-STD
8827, there are many others, lesser known analysis techniques.
These include Energy Transfer techniques wherein all sub-
systems and systems are considered on the basis of energy in -
energy out, and Resource Utilization techniques that consider
desired (and undesired) outputs codified on the basis of in-

put resources.
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IV. SOFTWARE ANALYSIS - GENERAL

Software reliability predictions are available that
provide numerical predictions of how many errors will remain
in the software when it is delivered, but these predictions
do not tell the effects of a software error, where it will
occur, or in what mission phase.

Several analysis techniques have been used to give
partial answers to the software system safety questions,
but these have been, in general, limited to individual
disciplines and/or to specific categories of failure.

There is, however, one factor that acts as a catalyst
for the solution of the software system safety problem,
and that is the fact that any software difficulty is tran-
slatable into a general system safety problem only if there
is a hardware involvement. That is to say, the only soft-
ware 'mishap" that has safety implication is one that
commands a hardware function at the wrong time, in the wrong
sequence, in the wrong manner or when the hardware component
should not be commanded at all.

This fact, in itself, gives rise to possible software
system safety techniques in which the software 'mishap' is
directly related to hardware 'mishaps' for which there are
well known and experienced analysis techniques, as discussed
in Part III. It would appear, therefore, that an examina-
tion of each known hardware mishap for possible software

command functions would suffice as a software system safety




analysis. And indeed it would, except that this wholesale
approach would be extremely time consuming and, as a result,
extremely costly. One would also have to exercise great
caution to ensure that software interfaces are considered in
addition to the already considered hardware interfaces.

Although there are many proponents of various single
technique methods for software system safety analysis, even
these techniques are generally modified so as to take
advantage of other techniques in some degree to reduce the
cost and time that would be otherwise involved,

In general, software analysis techniques for system
safety follow the hardware analysis methods. One method
is the 'bottom up' method similar to the Failure Mode and
Effect Analysis and another is the 'top down' procedure
related to the Fault Tree Analysis., Some detailed examina-

tion of these two methods, as well as a combined method will

be discussed in subsequent parts of this summary.




V. TOP DOWN SOFTWARE ANALYSIS

The Top Down analysis technique is based on the deter-
mination of hazardous termination points for the software
program. This is analogous to the Undesired Event which is
the Head Event of the hardware Fault Tree Analysis.

The first step in the Top Down techniques is to define
Acceptable Terminations as well as Hazardous Terminations.
Such a definition list, as related to a missile system, is
as follows:t

Acceptable Defined Terminations

l. Missile successfully launched.
2. Missile aborted with booster and warhead safe.
3. Missile aborted with booster or warhead not
saved and with operator alerts.
4, System cycled to Hold with operator alerts.
5. System cycled to Test Mode with operator alerts.
6. System recycled to known states with operator
; alerts.
7. System automatically cycled to power down with
N appropriate operator alerts.

) Hazardous Terminations

1. Unauthorized launch of a missile.
T 2. Unintentional launch of a missile, including the

launch of a wrong missile.

& lsoftware Safety and Security Analysis Techniques and

Methods, Vitro Laboratories, Silver Spring, MD, 1980.
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3. Missile abort without operator alerts. The
alerts to include the safety evaluation of the

aborted missile,

A premature issuance of a unique pre-arm signal.
An abort without adequate declassification,

An unauthorized disclosure of classified data.

~ (<)) wn >
e

Any unauthorized or unintentional modification

of safety and/or security sensitive programs or
data.

8. Any termination which is not a member of the set
of acceptably defined terminations.

It is to be observed that several of the Hazardous
Termination categories go well beyond the safety of the
hardware. For example, Item number 3, "Missile abort with-
out operator alerts” might appear to have "Fail safe”
connotations in that the missile aborted, presumably due to
proper software/hardware interaction. However, a new and
unique safety problem may arise if the operator is unaware
of the abort or of the reason for the abort and attempts to
operate the missile again.

With the hierarchial Top Down development process, the
software design cycles is as shown in Figure 3. As in the
hardware system safety, the best payoff occurs if the scft-
ware system safety is inserted early in the design process.
Although it is true that many systems have an initial hard-

ware design followed by the design of the control software,

15




even these systems should undergo a software analysis for
subsystems and for system interfaces as early in the design
process as practicable.

For those subsystems and systems in which the software
is "King", that is to say, for systems in which the software
is the principal, and possibly the first, design item and
then the hardware is designed to accomplish the desired out-
puts of the system, early analysis of the software is
essential.

The flow of control, as shown in Figure 3, starts at
the top level, goes down one or more levels, comes back as
required, and then goes down to another level.

The actual assessment depends on the construction of a
series of binary trees that have the following attributes:

l. There is a one-to-one correspondence between
decision points of the software and nodal branch points of
the tree.

2., Each branch can be categorized by a series of
state transitions that can be described by Boclean alogorithms.

3. The origin of each binary tree is always an operation
action, a machine-generated priority interrupt, a periodic
status monitoring, or a return to a higher level process.

Figure 4 is a generalized Binary State Transition Tree
which illustrates all constructs. Such a tree will be examined
for possible occurrences of system errors caused by program

errors (incomplete definition of state vectors or predicate

16
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transforms) or by single or multiple hardware failures.
System errors are treated as virtual branch points in which
the occurrence and subsequent processing is also treated as
a binary tree.

Such a tree is called a Binary Fault Termination Tree
and is also shown in Figure 4, This tree has end points
that may describe hazardous terminations, and, as such, is
of prime interest in software system safety analysis.

As has been previously stated, the only software
'mishap’ that is of concern in the system safety analysis
is one that produces an undesired hardware event. For this
reason, software errors that occur but are trapped and
contained and do not produce hazardous terminations are of
but secondary interest in the safety analysis. The Binary w
Fault Termination Trees are used to evaluate whether |
checkpoints are established to trap and contain the software
errors.,

. When errors have been identified and the processing
shows that a hazardous termination is being approached,
) the process may be translated into a probability function
to determine the probability of the hazardous termination.
This translation implies that the following probabilities

§ can be computed:

1. The probability that the system moves into the

0 implied mode.

: 2, The probability that the system moving from the

" implied mode misses the illegal procedure trap.

18
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Vi. BOTTOM UP SOFTWARE ANALYSIS

Another technique that is used for software analysis
is the Bottom Up Analysis. This technique is based on the
predication that any hazard that is created or allowed to
propogate must exist in hardware. Because of this, the
software safety analysis should analyze, within the software
boundaries, concerns identified within the hardware facets.
This stipulates that the software analysis is an extension of
the Preliminary Hazard Analysis (PHA).

Inasmuch as the Subsystem Hazard Analysis (SSHA) and
the System Hazard Analysis (SHA) follow the Preliminary
Hazard Analysis, the command and control software development
and analysis should follow the basic development of the hard-
ware that is to be controlled.

This offers the use of the techniques similar to the
Fault Hazard BAnalyses of hardware system safety. This
technique, which is akin to the long-used Reliability tech-
niques of Failure Mode and Effect 2Analysis (FMEA) or the
Failure Mode, Effect and Criticality Analysis (FMECA),
considers the undesired outcomes of the failure of a sub-
system or component.

The software analyses should address hazards resulting
from basic deficiencies in the requirements, the software
program design, the internal coding, the software testing,
the user interfaces, the backup software functions and the

hardware/software interfaces,

20




The general approach for this technique is as follows:1

l.

Divide the system into portions to gain insight into

sub-function operations.

2.
3.

Conduct the hardware system safety analysis.
Conduct the software system safety analysis.

a. BAnalyze for correct implementation of the

hardware functional requirements and interfaces.

(1) Review the functional requirements
of the subsystems being controlled.

(2) BAnalyze the requirements of the
software definition and implementation to ensure that
the software is kept in a safe configuration.

b. Analyze for internal software anomalies which
would affect the execution of the software.

(1) Analyze those functions that have been
designated safety critical,

(2) Analyze those functions that might affect
the execution of the safety critical functions.

(3) Review for implementation of errors or
anomalies in the detailed requirements, the detailed program
design and/or the coding.

(4) Review the timing of competing/overlapping

functions.

1Software Safety Analysis, A Presentation by John G.
Griggs, Martin Marietta Corp. at Tri-Service Safety Conference
Colorado Springs, CO, September 1980.

21




(5) Review the use of incorrect data and/or

changing data.

(6) Review the use of coding techniques to

minimize the effects of errors.
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VII., COMBINED TECHNIQUE

A combination of the Top Down and the Bottom Up
Techniques has been developed by the Boeing Aerospace Companyl
into a technique called Integrated Path Critical Analysis
(ICpa).

The seven step ICPA combines Fault Tree Analysis for the
identification of critical paths, Failure Mode and Effect
Analysis for component failure rates, Sneak Circuit Analysis
for actual detailed system configuratior Component Sensi-
tivity Bnalysis for the determination of areas of emphasis
and Critical Path Analysis to evaluate and quantify overall
system reliability and safety.

The steps outlined by Boeing Aerospace for this
technique are as follows:

1. Determine the Scope of the Analysis.

a. This is usually accomplished by reviewing the
top level hazards and/or critical functions and then deciding
which ones should be analyzed in detail and to what level,
This may be done by using existing Fault Trees and FMEA's
and marking them for particular emphasis.

2, Establishment of Accurate System Configuration in

the form of Integrated Functional Network Trees.

I'-Software/Hardware Integrated Critical Path Analysis

(ICPR) by J. H, Campbell and F, H. Tuna in Proceedings of
Fourth International System Safety Conference, July 9-13, 1979.
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a. It is essential that the analysis be conducted
on an accurately represented system. The use of logic trees
assists in the determination of the accuracy of the system
configuration under examination.

3. Updating and Integrating Fault Trees.

a. Here one applies the material generated from
Step #2 and adds the software network threats which change
the impact of the hardware due to usage and/or interconnect
hardware, thereby changing the hardware interrelationships.

4. Reliability Prediction of Critical Paths.

a. Once the critical paths have been defined, the
reliability numbers can be affixed to present a reliability
prediction,

5. Procedure Analysis.

a. This step considers all procedures including
test, contingency and backup.

6. Failure Effect Analysis.,

; a. The previous steps have emphasized the possible

critical steps and paths, and these functions are now analyzed.
< 7. Analyses Reports, )
} a. These reports are generated to permit management
decisions in regard to changes and alterations to the suspect
subsystems and systems, These reports should contain the
revised Fault Trees, sensitivity statements, hardware/software

interaction problems and the failure effects of critical paths,
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VIII. CONCLUSIONS

The subject of software system safety is relatively new.
Concern in the Electronic Industries Association (EIA) was
first expressed about a year and a half ago and the EIA
formed a task force to develop a generic approach to the
analysis of software system safety in August 1979.

This action is significant due to the activity of the
G-48 Committee of the EIA in developing codified System
Safety requirements and fostering the development of System
Safety analysis techniques.

There appear to be techniques available for the analysis
of System Safety software problems, and these techniques are,
in general, based on the proven techniques used in hardware
System Safety analysis.

Despite the particular technique to be used, it appears
that software analysis parallel with software development has
the greatest payoff at this time.

Although the analysis techniques in greatest use to date
have been, at the most, a modification of the hardware tech-
niques, there are people working on different techniques which
have, as yet, not demonstrated any spectacular results. This
is not to say, however, that such methods are not to be closely
monitored, because it is quite possible that these, rather

radical, methods may yet have a significant payoff.
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